Contents | Introduction to the Fourth Edition Acknowledgements | | |--|--| | Part One Understanding Reliability Parameters and Costs | 1 | | 1 The history of reliability and safety technology | 3 | | 1.1 Failure data 1.2 Hazardous failures 1.3 Reliability and risk prediction 1.4 Achieving reliability 1.5 Major activities 1.6 Contractual pressures | 3
4
5
7
8
8 | | 2 Understanding terms and jargon | 10 | | 2.1 Defining Failure and failure modes 2.2 Failure Rate and Mean Time Between Failures 2.3 Interrelationships of terms 2.4 The Bathtub Distribution 2.5 Down Time and Repair Time 2.6 Availability 2.7 Hazard and risk-related terms 2.8 Choosing the appropriate parameter | 10
12
14
16
17
21
21
22 | | 3 A cost-effective approach to quality, reliability and safety | 24 | | 3.1 The cost of quality3.2 Reliability and cost3.3 Costs and safety | 24
27
29 | ## vi Contents | Part Two Interpreting Failure Rates | | | |-------------------------------------|--|----| | 4 | Realistic failure rates | 35 | | | 4.1 Data accuracy | 35 | | | 4.2 Microelectronics data | 37 | | | 4.3 Overall data | 41 | | | 4.4 Sources of failure rate data | 43 | | 5 | Interpreting data and demonstrating reliability | 50 | | | 5.1 The four cases | 50 | | | 5.2 Inference and confidence levels | 50 | | | 5.3 The Chi-square Test | 52 | | | 5.4 Double-sided confidence limits | 54 | | | 5.5 Summarizing the Chi-square Test | 55 | | | 5.6 Reliability demonstration | 55 | | | 5.7 Sequential testing | 60 | | | 5.8 Setting up demonstration tests | 61 | | | Exercises | 62 | | 6 | Variable failure rates and probability plotting | 63 | | | 6.1 The Weibull Distribution | 63 | | | 6.2 Using the Weibull Method | 66 | | | 6.3 More complex cases of the Weibull Distribution | 68 | | | 6.4 Continuous processes | 70 | | | Exercises | 71 | | | | | | | Part Three Predicting Reliability and Risk | 73 | | , | 7 Essential reliability theory | 75 | | | 7.1 Why predict? | 75 | | | 7.2 Probability theory | 76 | | | 7.3 Reliability of series systems | 78 | | | 7.4 Redundancy rules | 79 | | | 7.5 General features of redundancy | 86 | | | Exercises | 89 | | : | 8 Methods of modelling | 90 | | | 8.1 Markov Analysis | 90 | | | Contents | vii | |---|------------------|--| | Exercises 8.2 Fault Tree Analysis 8.3 Common mode effects 8.4 Cause consequence diagrams 8.5 Simulation 8.6 Human factors 8.7 FMEA (Failure Mode and Effect Analysis) | 1
 | 101
102
107
115
119
122 | | 9 Risk assessment | 1 | 128 | | 9.1 Frequency and consequence9.2 Hazard identification9.3 Factors to quantify | 1 | 128
128
130 | | Part Four Achieving Reliability and Maintainabil | lity 1 | 35 | | 10 Design and assurance techniques | 1 | 37 | | 10.1 Specifying and allocating the requirement 10.2 Stress analysis 10.3 Environmental stress protection 10.4 Failure mechanisms 10.5 Complexity and parts 10.6 Burn-in and screening 10.7 Maintenance strategies | 1
1
1
1 | 137
138
142
143
145
145 | | 11 Design review and test | 1 | 52 | | 11.1 Review techniques11.2 Categories of testing11.3 Reliability growth modelling | 1 | .52
.53
.58 | | 12 Field data collection and feedback | 1 | .61 | | 12.1 Reasons for data collection 12.2 Information and difficulties 12.3 Spreadsheets and databases 12.4 Analysis and presentation of results 12.5 Examples of failure report forms | 1
1
1 | .61
.63
.64 | | 13 Factors influencing down time | 1 | 71 | | 13.1 Key design areas13.2 Maintenance strategies and handbooks | | 71 | | V111 | Con | ten | ts | |------|-----|-----|----| | | | | | | 14 | Predicting and demonstrating repair times | 193 | |----|---|--| | | 14.1 Prediction methods14.2 Demonstration plans | 193
204 | | 15 | Software quality/reliability | 208 | | | 15.1 Programmable devices 15.2 Software failures 15.3 Software failure modelling 15.4 Software quality assurance 15.5 Modern/formal methods 15.6 Software checklists | 208
209
211
212
219
221 | | | Part Five Legal and Management Considerations | 227 | | 16 | Project management | 229 | | | 16.1 Setting objectives and specifications 16.2 Planning, feasibility and allocation 16.3 Programme activities 16.4 Responsibilities 16.5 Standards and guidance documents | 229
229
230
232
232 | | 17 | Contract clauses and their pitfalls | 234 | | | 17.1 Essential areas 17.2 Other areas 17.3 Pitfalls 17.4 Penalties 17.5 Subcontracted reliability assessments 17.6 Example | 234
238
239
241
243
244 | | 18 | Product liability and safety legislation | 246 | | | 18.1 The general situation 18.2 Strict liability 18.3 The Consumer Protection Act 1987 18.4 Health and Safety at Work Act 1974 18.5 Insurance and product recall | 246
247
248
249
250 | | 19 | Safety-critical systems and major incidents | 253 | | | 19.1 History of major incidents 19.2 Major incident legislation | 253
254 | | | Contents | ix | |---|----------|-----| | 19.3 Safety-critical systems | | 255 | | 19.4 Current guidance | | 256 | | 20 A case study | | 260 | | 20.1 Introduction | | 260 | | 20.2 The DATAMET Concept | | 260 | | 20.3 Formation of the project group | | 263 | | 20.4 Reliability requirements | | 263 | | 20.5 First design review | | 265 | | 20.6 Design and development | | 269 | | 20.7 Syndicate study | | 270 | | 20.8 Hints | | 270 | | Appendix 1 Glossary | | 271 | | Appendix 2 Percentage points of the Chi-square Distribution | | 280 | | Appendix 3 Microelectronics failure rates | | 284 | | Appendix 4 General failure rates | | 286 | | Appendix 5 Failure mode percentages | | 294 | | Appendix 6 Human error rates | | 297 | | Appendix 7 Fatality rates | | 299 | | Appendix 8 Answers to exercises | | 301 | | Appendix 9 Bibliography | | 305 | | Appendix 10 Software packages | | 308 | | Appendix 11 Simulation source code | | 311 | | Index | | 317 | Fourth edition ## Reliability Maintainability and Risk **Practical Methods for Engineers** David J. Smith